Skip to main content

URL time

PewPew 1.2 should be accepted anytime now, so the scores are going to start to pour in... luckily I have just completed PewPew's website:

The most important features are the score board and the forum. I made the score board myself in python, and found the code for the forum here. The forum is pretty cool, because it allows you to post with your Google account, or without login at all.

Everything is hosted on the Google App Engine, so if the traffic stays under a limit, I will never have to pay for the servers, and the website will stay up and running for ever.
According to my estimations, I can handle 100 000 score submissions per day without paying for additional bandwidth. Since "only" 50 000 people have installed PewPew, I should be fine.
I have no idea what to expect regarding the CPU utilization, but I have cached a lot of database calls, so I should be OK.
At worse, I might have to pay 1 or 2$ per day during the first week; after the first week, the traffic should decrease significantly.

Comments

  1. Oh, that's clever. Kudos! Oh, and 1.2 rocks. Love the new mode. Keep up the awesome work. Any plans for doing any other apps?

    ReplyDelete

Post a Comment

Popular posts from this blog

PewPew Live's look in a nutshell

Occasionally someone will asked how I obtained the PPL look. In a nutshell: Draw everything with lines, including the text and the various icons. It's a lot of work, but besides looking unique it creates a consistent appearance which is a thing that a lot of indie games struggle with. The lines are screen-space projected lines with miter joins. Draw the lines with additive rendering. This means that if a red and green line overlap, the overlap will be yellow. There are a few things not drawn with additive rendering (like the background of buttons to improve readability), but they are exceptions. Add bloom. There's lots of different bloom implementations. Nowadays I use a bloom that is similarly to the one in  blender's eevee . If you see banding, use dithering. Optional: Add even more post-processing like (very slight) chromatic aberration, lens dirt, scan lines, curved monitor, and vignette. No post-processing, just lines Bloom! Ignore the missing bloom at the top All the...

A general state rollback technique for C++

I wanted to write this post for a while. It describes a C++ technique to implement rollback in the context of multiplayer games that I feel is quite interesting and useful. The tl;dr is: don't bother serializing individual objects, just rollback all the memory. Rollback-based multiplayer I've been working on a multiplayer version of PewPew, and for reasons that are outside of the scope of this post, I chose to implement multiplayer with deterministic lockstep and rollback. The basic idea behind rollback-based multiplayer is that the inputs of players are replicated to all the players. Whenever a player receives the inputs of another player, the state of the game is rolled back to the point where the input happened and fast-forwarded back to the present so that the state shown to a player takes into account the inputs of the other players. Because history is being re-computed, some events get undone. For example, it's possible a player saw themselves taking a bonus, but aft...

Ridiculously cheap depth of field effect for lines

I'm working on PewPew's sequel, for which I've revamped the graphics. Instead of drawing lines directly using OpenGL, each individual line segment is made up of two triangles whose vertexes are computed with shaders. Getting lines in 3D space to be properly displayed on a 2D screen is not trivial. In PewPew's sequel I use the screen-space projected lines, a technique very well described in the  Drawing Lines is Hard  post. The upside of drawing the lines yourself is that you are fully in control, which allows you to implement nice things such as joints, perspective, and even simulate depth of field. https://en.wikipedia.org/wiki/Depth_of_field Usually depth of field (DoF) in video games is implemented using a post-processing step that blurs the pixels with an intensity that is a function of the depth of the pixels. When we are rendering lines, we can approximate DoF directly when rendering the lines by having the vertex shader increase the width of lines and r...